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Abstract 

Several new methods are presented for the capturing and tracking of ma- 
terial boundary interfaces. All methods belong to the general Volume Of 
Fluid (VOF) approach, and vary from simple flow aligned algorithms to more 
complex geometric modeling. The performance of the different methods is 
evaluated by solving the advection equations for a variant of the canonical 
multi-fluid “ball & jacks” problem. 

I. INTRODUCTION 

Tracking the movement of free surfaces and interface boundaries between different ma- 
terials is of significant importance in many numerical hydrodynamical calculations. If the 
numerical methods are of low order, interfaces can be easily destroyed by the inherent dif- 
fusion in the algorithms. Higher order conventional advection techniques (e.g., second order 
upwind with monotonicity) can reduce the diffusion somewhat, but at the expense of in- 
troducing a front capturing procedure, though oscillations may still emanate from the front 
regions to corrupt the global solution. However, even higher order front capturing methods 
are not adequate for features with characteristic length scales of order a few grid cells, or for 
capturing sharp contact discontinuities in a single cell without specialized treatments. For 
problems with complex interactions at the interfaces, it is even more important to accurately 
track the boundaries in order to apply the necessary physical conditions arising from, say, 
free surface flows, surface and body tension, or even chemical reactive fronts. 

A number of approaches have been developed over the past few decades to explicitly track 
interface boundaries and solve.the governing dynamical advective equations coupled with the 
appropriate hydrodynamics equations. These methods are designed to preserve discrete and 
discontinuous shapes without introducing averaging procedures, and thereby substantially 
reducing boundary diffusion and promoting more accurate numerical evolutions with much 
coarser resolution than allowed by front capturing methods. The algorithms presented in 
this paper belong to the Volume Of Fluid (VOF) method class [l-5]. In this approach, 
each material surface is reconstructed from the fractional volume of fluid content in each 
cell, eliminating the need to develop complex data and logic structures required by marker 
[6] or surface [7] tracking methods which generally introduce and evolve transitory nodal 
elements on unstructured boundary surfaces with Lagrangian techniques. VOF methods are 
also desirable in that they can easily handle global topological changes that may occur in the 
event of fragmentation processes and droplet mergers. Due to their robustness, simplicity, 



and computational efficiency in terms of CPU time and memory allocation, VOF methods 
continue to be very widely used [8,9]. 

Several different methods from three distinctive grades of the VOF method class are 
presented in sections II and III, and subsequently compared for performance and error 
analysis in section IV. Some methods represent improvements to existing ideas, while others 
are new procedures designed for simplicity and for easy generalization to three-dimensional 
structured and unstructured meshes. The various methods and their relative performances 
are summarized for convenience in the final section V. 

II. BASIC VOF CONCEPTS AND MATERIAL ORDERING SCHEME 

The dynamical evolution of material interfaces for nonreactive flows is governed by the 
following set of advection equations, assuming the flow to be incompressible: 

where M is the total number of materials, vj denotes the fluid velocity, and FI”l is the volume 
fraction occupied by the mth fluid material and is defined as a step function: Fl”l = 0 if the 
cell is empty of material m, Fl”l = 1 if the cell is completely filled with material m, and 0 < 
Fl”l = V[ml/VT < 1 in cells containing an interface boundary, where VT = C,“=, VLrn] is the 
total cell volume. The volume fraction is thus simply advected with the flow characteristics 
of the hydrodynamical system. 

Equation (1) is solved using a six step upwind donor cell procedure with the following se- 
quence: (1) identify those cells containing an interface boundary by computing the maximum 
volume fraction of all materials and tagging the cells satisfying & < max(Flml) < 1 - F,, 
where the critical volume fraction F, is typically set to one percent (all remaining cells are 
treated in the same manner as a first order upwind method); (2) extract a 3 x 3 (in two 
dimensions) brick of cells centered on the donor cell; (3) estimate the orientation of the 
boundary surface (for all the methods other than the grid aligned models described below) 
using the volume fraction distribution within the extracted brick; (4) for the more general 
arbitrary surface orientation models (see below), shift the position of the boundary surface 
until the volume bounded by the interface surface and the cell faces matches the material 
volume fraction in the donor cell (of course this also requires a procedure to determine on 
which side of the surface the fluid lies); (5) compute the volume of fluid bounded by the 
donor cell faces, the reconstructed interface boundary, and the advection control volume set 
by the CFL constraint on the timestep (i.e., vAtAy for advection along the z-direction on 
uniform grids); (6) update the discretized advection equation from time levels n to n + 1, 

by computing the fluxes from the bounded volume fractions as 

(3) 

(4) 
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where Vi[y] is the mth fluid material volume bounded in the spatial (i,j) cell by the interface 
surface &rd the advection control volume. Here it is assumed that the flow velocities are 
staggered spatially in relation to the volume fractions: velocities are face centered, volume 
fractions are cell centered. The volume fractions are then updated by 

(5) 

All of the steps outlined above are applied independently to each dimension of the problem 
using directional splitting to separate the two grouped volume terms in the right-hand-side 
of equation (5), 

An important. element in multi-fl.uid calculations is the automatic and localized ordering 
of the different materials for advection. Since the VOF approach estimates fluxes from the 
distribution of volume fractions and advects more accurately those materials which fill the 
advection volume in the leading edge of the donor cell, one can obtain better results if 
the materials are ordered from highest downstream presence to highest upstream presence. 
This also conveniently allows for an effective accumulated fluid composition to be formed 
from materials of higher precedence, thereby filling the donor cell from the downstream to 
upstream direction, and eliminating the need to track interface boundaries on all sides of 
each material. A single composite volume fraction is defined as 

Fjrnl = min 1, 2 FLel , 
[ I 

(6) 
fkl 

where Fjml denotes the volume fraction from the first m ordered materials. The six-step 
advection process is repeated for each composite group of materials to compute the accu- 
mulated fluxes J=irnl (or equivalently advection volumes). The individual material fluxes are 
recovered through the normalization procedure 

designed to limit the total volume fraction from exceeding unity, and the individual volume 
fractions from becoming negative. 

The materials are ordered into the four basic groups shown in Figure 1, plus an addi- 
tional fifth group to handle those materials not falling into any of the others. Basically 
the first group is the highest priority in the advection process since it stores the predom- 
inantly downstream materials. Using the simple notation F$&, FE1 and FL?, to denote 
the upstream, donor and downstream cells for material m respectively, fluids falling into 
this category satisfy FA?l < F, and (FE], F&lJ > F,, and represent a surface orientation 
essentially perpendicular to the flow field. The second group includes materials with surfaces 
aligned more parallel to the flow field and are characterized by (F$&, FE', FLTl) > F,. 

The third group represents isolated fragments with (FLY,, FLY,) < F, and FE1 > F, which 
are advected prior to the dominantly upstream materials. Finally the fourth group includes 
trailing materials characterized by FhTl < F, and (Fh!,, FE]) > F,. However, it is en- 
tirely possible that more than one material can fall into each category, making it necessary 
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to implement a more quantitative procedure to order the fluids within each group. Since the 
general idea is to advect from leading to trailing edge materials, a simple calculation-of the 
normalized volume fraction gradient provides a convenient measure of priority. For groups 
1, 2, and 4, the order parameter is defined as 

P= 
F D+l-FD-1 

FD 

This parameter naturally increases (decreases) for higher volume fractions in the downstream 
(upstream) cells. It also increases in magnitude for smaller donor cell fractions when the 
upstream or downstream cells are saturated to unit fraction levels, reflecting the “steeper” 
nature of the interface surface. For the third group in which there is little or no fluid present 
in either the upstream or downstream cells, the appropriate order parameter is simply the 
volume fraction in the donor cell P = Fo. 

III. NUMERICAL METHODS 

The procedures described above make clear that the actual interface boundary is not 
tracked directly. Rather the boundaries are reconstructed locally from the evolved volume 
fraction content of each material within the donor cells. The process by which the sur- 
face is reconstructed suggests a natural classification of VOF algorithms into three distinct 
categories: 

1. grid aligned models in which the interface is approximated as a piecewise constant or 
“staircase”-like surface and is basically aligned either parallel or perpendicular to the 
flow directional component (independently along each dimensional sweep), 

2. flux corrected models that adjust one of the two aligned orientations (the parallel 
component) with a sloped line based on the local volume fraction distribution, and 

3. arbitrary surface orientation models representing a more general approach which ap- 
proximates the surface as a piecewise linear, but arbitrarily oriented surface or plane. 

A schematic exemplifying the first and third category models is shown in Figure 2. 
Several new (or in some cases improved or generalized) algorithms will be presented in 

the following subsections, classified according to the three basic class methods and discussed 
from the simplest to the more complex. Numerical calculations will be postponed until the 
following section, where we compare results from each of the algorithm types. 

A. Grid Aligned Models 

I. Modified SLIC Methods 

One of the earliest VOF algorithms (Simple Line Interface Calculation or SLIC) is at- 
tributed to Noh and Woodward [a]. The SLIC method assumes the interface surface is 
aligned either parallel or perpendicular to the flow vector component in each dimensional 

4 



sweep. The algorithm thus works well if the flow geometry is primarily aligned parallel 
to one coordinate direction or along the sum vector field. However, it can become -highly 
inaccurate for more complex geometries or off-axis translational and rotational flows (see, 
for example, references [lO,ll]). 

By generalizing the SLIC algorithm to allow for “corner” turns within a single cell, it 
is possible to more closely represent tilted surface orientations with an adjustable volume 
fraction jump inside the donor cell, effectively increasing the curvature modeling capabilities 
at smaller subzone scales [12]. A modified SLIC-like algorithm with improved stability and 
accuracy is achieved by considering five different flow topologies as determined by the volume 
fractions in the three (upstream, donor, and downstream) cells. The fluid distributions 
corresponding to the five cases are shown in Figure 3 and defined by: FD-1 5 F,, Fo > F,, 
&+I 2 F, (Case A); FDB1 2 1 - F,, Fo 2 F,, F D+I 2 E (Case B); FD-I 2 F,, FD 2 F,, 
FD+~ 2 F, (Case C); FD-~ 2 1 - F,, FD > F,, FD+l 2 F, (Case D); and FD-r > F,, 
FD 2 F,, FD+~ 2 1 - F, (Case E). The corresponding flux formulas are easily derived by 
integrating the bounded volume of fluid and imposing the proper flux limiting constraints to 
automatically account for the corner adjusted flux and the locally available volume of fluid: 

Case A : FDtlia E V,/Ay = min[FDAx, vAtFD+l], 
Case B : FD+r/z = Vo/Ay = min[FDAz, max(O, vAt - (1 - FD)Ax)], 
Case C : .9=~+r/z z Vo/Ay = VAtFD, 
Case D : FD+rjz f v~/Ay = min[FDAx, vAtFo+r+ 

max((1 - FD+l)vAt - (1 - FD)Ax, O)], 
Case E : FD+l/2 = vD/AY= min[FD+l VAt, FDAz - FD-~(Ax - UAt)]. 

(9) 

Notice that these expressions are written explicitly for advection along the x-axis (the 
corresponding y-axis formulae are obtained simply by replacing Ax by Ay and assigning v 
to be the velocity along the y-axis). Equations (9) are also supplemented with the default 
value FD+rj2 = vA~FD if all of (Fo-1, FD, and FD+l) are less than or greater than F,, or if 
the volume fraction in any two adjacent cells are less than F,. 

An alternative and more general (though also much simpler) implementation of plane 
corners is achieved by introducing four parameters (in 2D) representing the dimensions 
of two distinct blocks of fluid which run the length of the donor cell ,along the advection 
direction. Assuming a velocity vector pointing in the +x direction, the width and height 
dimensions of the two fluid blocks are denoted by 6x1, 6x2, 6yr and 61~2, with the block 
labeled with subscripts 1 (2) being more downstream (upstream) than the other. The height 
functions are’associated with volume fractions in the adjoining downstream and upstream 
cells: 6yr = F~+rny, and 6~2 = F&rAy. The width parameters are determined by the 
constraints 

6x1 + 6x2 = Ax, (10) 

and 

6xr6yr-!- 6x26~2 = FDAxAY. (11) 

The fluid flux is then defined as 

.9=D+l/2 = VD/AY = FD+lvAt (12) 
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if uAt 5 6x1, or 

.?=13+1/2 G V~/ny = ~x~FD+I + (vnt - SX~)FD-I (13) 

otherwise, where 

6x 
1 

= (FD -FD-I)~x 
F D+l- FD-I ' 

(14 

For cases in which 6x1 < 0 or 6x1 > Ax the flux is simply set to v&FD. Together, 
equations (12) and (13) can account for each of the five cases in Figure 3, in addition to 
modeling corner turns for which neither of the the fluid blocks run cell edge to cell edge 
across the transverse direction. However, the two methods yield comparable results for the 
test problems considered here. 

2. Donor/Acceptor Limiter 

To present a more thorough comparison of the different algorithms in section IV, a 
slightly modified variant of the fairly popular donor/acceptor method of Hirt and Nichols 
[3] is included here for completeness. This approach utilizes a parameterized flux limiting 
formula to compute the amount of advected fluid as 

.7-~+i/z = min[FvAt + max((1 - F)vAt - (1 - Fo)Ax, 0), FDAx], (15) 

where F is determined by the slope of the interface boundary and the local fluid topology. 
The interface slope s is estimated from the volume fraction gradients centered on the donor 
cell by one of the several methods discussed in section III B 2. The parameter F is set to Fo 
for relatively flat surfaces in which ]sD] < s,, or to FD+l otherwise, where s, is a critical slope 
typically equal to 0.5 in order to delineate flat from steep surfaces. In addition, F = FD+I 
if FD+~ < F, and FD-~ > F,, or if F&l < F, and F D+i > F,, where F, is generally set to 
0.4 and is used to enforce the steepness condition for reasonably filled donor-neighbor cells. 

3. Monotonic Flux Fitting Approach 

An altogether different approach to interface capturing that falls within this grid align- 
ment group is the idea of estimating volume fluxes from some simple constraints and mono- 
tonic curve fitting formulae. For example, as a fluid parcel passes through the donor cell, 
the flux volume necessarily passes from zero as the fluid first enters the cell, to a maximal 
value (equal to the advection control volume if the parcel is large enough), then decreases 
again to zero as the fluid exits the other side. Rather than attempting to compute exactly 
the fluid volume at each stage, one could instead model the curves only approximately using 
a monotonic function to fit the general behavior. Because the leading and trailing edge 
functions are necessarily different, the corresponding fluxes are fit separately with different 
formulas. Letting Fi+i,2 and G+rj2 respectively represent the leading and trailing edge 
fluxes for the one-dimensional problem along the x-direction, the following formulas 
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&2= ~D(3-~)+2F~(~-1)],At, (16) 

&2= ~D(~-1)+2F~(~-~)]~ar, (17) 

produce fairly robust approximations. The decision on which of the two formulae to apply 
is dictated by the sign of the local fluid volume gradient along the transport direction (the 
x-axis in this example): O,Fiyl < 0 for the leading edge, and O,F$] > 0 for the trailing 
edge. In practice this is carried out by monitoring both of the edge-centered gradients 
6F+ = (FD+~ - &)/AX and 6F- = (FD - FD-i)/Ax, then applying the appropriate leading 
or trailing edge formulae, or simply setting -TDs1i2 = &vat if the product SF+&F- < 0. It 
is worth pointing out that equations (16) and (17) differ from the conventional second order 
monotonic van Leer [13] f ormula only by numerical constants, once the derivative expressions 
in the van Leer formula are expanded out and the proper volume fractions (either zero or 
one) are inserted at the outer boundaries of the fluid parcel. 

Figure 4 shows a graph of both the leading and trailing edge normalized Aux fitting 
formulae, (16) and (17), as a function of volume fraction and for different advection control 
volumes. The curves lying above (below) the forty-five degree line represent the trailing 
(leading) edge results. Also shown are the corresponding second order upwind approxima- 
tions with the assumptions described above, and the exact fluxes derived by integrating 
the fluid volume in the donor cell for a single-dimensional flow. Considering the case of 
uAt = 0.6 for which the exact 1D analytic results are plotted with star symbols, and com- 
paring the dot-dashed lines with the connected open squares, it is clear that the flux fitting 
formulas are better approximations to the exact results. Deviations between the fitting 
formulas and the exact solutions range from essentially perfect agreement for nearly empty 
or filled cells, to roughly 20% in the worst case limits corresponding to volume fractions 
FD M vAt for trailing edges or FD z Ax - vAt for leading fluid elements. However, Figure 
4 also suggests the possibility of formulating even more accurate fitting expressions than 
those presented here. 

B. Flux Corrected Models 

1. CALE 

A common interface tracking algorithm found in many numerical codes developed at 
Lawrence Livermore National Laboratory is based on a variant of the SLIC and Wilson- 
LeBlanc methods due to Tipton 1141 that was primarily driven by numerical experiments and 
first surfaced in the CALE code. There are four main components to the algorithm: (1) the 
slope calculation to estimate surface orientations from the straight-line two-point gradient 
ratio, and to split materials into either series or parallel groups; (2) the SLIC-like treatment 
of leading edge only series flows; (3) a second order correction for parallel flows based on the 
maximum of the two edge-centered volume fraction gradients around the donor cell; and 
(4) the advection ordering of materials into three general groups, with the leading series and 
parallel materials collectively being the highest but equal priority, followed by the middle 
series materials, then the trailing series materials of the lowest priority order. Additionally, 
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the CALE method also includes several extra rules to further classify materials into either of 
the series or parallel groups. These rules lack rigor in general, but are found from numerical 
experiments to produce reasonable results. The basic components are outlined here to 
facilitate a clear comparison with a new alternative flux corrected procedure described in 
the following subsection. 

2. Monotonic Flux Correction 

The method described here represents a hybrid procedure designed to offer a compromise 
between the simplicity and speed of grid alignment models and the accuracy and stability 
of arbitrary surface orientation models. There are four main components to the algorithm: 
(I) the slope calculation to quantify the local flow geometry; (2) the advective treatment of 
steep surface orientations using SLIC-like rules for all leading, middle and trailing materials; 
(3) the second order treatment of locally shallow sloped geometries; and (4) the material 
ordering scheme described in section II for increased accuracy. Each of the four components 
are described below. 

There are many ways to estimate the slope s of the interface boundary. The most 
straightforward procedure is to associate the slope with weighted volume fraction gradients 
in the extracted 3x3 brick centered on the origin of the donor cell. In general, 

V&i SD f? si,j = -e = - X:=-I Wi+l,j+k&+l,j+k - CL=-, Wi-l,j+kFi-l,j+k 
IX:=--1 wi+e,j+lFi+e,j+l - C~,-.-l wi+e,j-lFi+e,j-1 ’ (18) 

where wi,j is the weight factor that can differ for each cell in the 3x3 brick. The simple 
straight-line gradient (in which wi,j is unity on the four cells directly north, south, east and 
west of the donor cell, and zero everywhere else) does not work well in many cases as shown 
in section IV. Two variants that do work well include an uniformly weighted scheme in 
which wi,j is unity everywhere including the diagonal cells, and a weighted scheme in which 
the diagonal cells carry half the weight of the four centered cells. 

In addition, an alternative technique useful for estimating the slope is based on the 
volume fraction centroid. In this approach, the interface boundary is associated with the 
vector normal to the line connecting the volume fraction centroid to the donor cell center 

./ 
Xij ck-I ck-1 Xi+e,j+kfi+t,j+k 

%’ = -z = - ci,-l ~~=-l yi+e,j+&+e,j+k ’ 
(19) 

where (xi,j, yi,j) and (x&., $$) are the cell center and centroid coordinates from the donor 
cell origin. Although this generally provides a fairly good approximation of the surface 
orientation, the centroid calculation is most useful for determining on which side of the 
interface boundary that the fluid lies - a necessary ingredient in arbitrary surface orientation 
models (see below) for computing face-centered fluxes. 

Once the slope is computed, the flow geometry is characterized locally as either parallel 
or series, depending on whether the slope is flat (Isi,jl < 1) or steep (Isi,jl > 1) and a few 
additional criteria based on the local volume fraction distribution. Materials that have been 
grouped as series are given the highest (lowest) priority in the advection sequence if the 
material is dominantly downstream (upstream) as described in section II. The volume flux 
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for this group of materials (Categories 1, 3 and 4 of Figure 1) is computed in a similar 
manner as the grid aligned methods presented in section III A 1. In particular, the fiux is 
assigned as 

3 gilIz = min(vAt, FDAx), (20> 

for leading and middle materials advected along the x-axis, or 

3 gil,z = min(vAt, max(O, vht - (1 - FD)Ax)), (21) 

for trailing materials. Fluids grouped as parallel are given intermediate priority as assigned 
to Category 2 materials (see Figure 1). The volume flux for this parallel component is 
estimated through a slight variant of the higher order monotonic flux fitting procedure 
discussed in section III A 3, and designed to account for a sloped interface analogous to a 
second order upwind procedure with monotonicity constraints. The flux in this case is 

(22) 

if (&I+, - FD) ( FD - FD-1) > 0 or PDyr,z = FDvAt otherwise (and constrained so as not to 
exceed the available fluid in the advection control volume). The free parameter c is typically 
set in the range 1 < c < 2. To prevent spurious features from forming at the transition 
cutoff slope (Is,] = l), the flux in cells with interface slopes in the range fijs,l 5 IsI < fUIscI 
is modified by a linearly weighted average 

3 tram _ -per 

D+1/2 - Di-l/2 + cpD:1,2 - 3%/2 (23) 

where fU and fi are constants typically set to 3 and l/3 respectively.. 

C. Arbitrary Surface Orientation Models 

I. Spherical Mapping 

One of the more complex and time consuming elements of this method class is the 
problem of finding the location of the interface (once the slope is determined) so as to 
match the bounded volume to the donor cell volume fraction. The problem is linked to the 
many geometric permutations arising from various unique possible plane intersections, and is 
especially problematic for 3D and unstructured meshes. A possible means to overcome this 
limitation may be realized by mapping the donor grid cell onto a sphere (or more generally 
an ellipsoid) with the same total volume. This has the advantage that any interface surface 
orientation and position would be treated homologously. It is also potentially useful, and 
likely asymptotically more accurate, for arbitrary polygonal or polyhedral cells. 

Letting r and rg represent the sphere radius and the perpendicular distance from the 
origin (at the center of the donor cell) to the interface boundary, the area A of the bounded 
region as shown in Figure 5 is given by 



A T 
F=2-sin -1 To To ro 2 --- T T l- 7 , 

J 0 

where r = m AxAy K to match the total circular and rectangular grid cell areas. It is 
important to note that the parameter r. can be either positive for bounded areas that do 
not cross the origin (basically less than half the area of the sphere), or negative if the 
bounded region includes the origin and accounts for more than half the area of the sphere. 
The bounded region is the domain containing the fluid and is determined by the location 
of the volume fraction centroid relative to the sphere center as discussed in section III B 2. 
Since the general idea is to devise an algorithm that does not require an iterative procedure 
to converge on the surface location, equation (24) is expanded out to third order in the 
smallness parameter E = ro/r 

A F,AxAy 
7= T2 

which has the real root solution directly relating r. to Fo 

TO - = -(U” + pqy 
r 

cos (o/3) + x/Z (U” + (V1)1/6 sin (Q/3) , 

where 

and 

0 = tan-i 4 . m 

( ) 

(25) 

(26) 

(27) 
cw 

(29) 

This expansion is fairly accurate and yields maximum errors of order 10% for the worst case 
scenarios in which E = fl. Equations (26) through (29) provide a means of directly locating 
a point on the line representing the interface surface with a bounded volume that is consistent 
with the volume fraction in the donor cell. This, together with the slope determined by the 
volume fraction gradients, completely defines the interface boundary without the need for 
iterative procedures or complex geometric modeling. 

Since the smallness parameter is well defined and bounded in the radial domain, it is not 
a problem finding solutions to the third order polynomial equation. However, the intercept 
parameter in the usual linear equation is computed from a similarity solution of triangles 
involving ratios of the volume fraction gradients defining the slope, and can become singular 
in some cases. For example, the intercept along the y-axis is given by 
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and is undefined for steep slopes in which V,Filj --+ 0. Hence, the interface description is 
decomposed into two calculations: one using the y-axis intercept when ]si,j] 2 1 and the 
second using the x-axis intercept defined by 

when ]SQ] > 1. 
Once the orientation and location of the interface surface are determined, the volume 

Aux bounded by the interface and the advection control volume is computed as 

VD 3D+l12 z - = FD 

AY 

where V,,, is the fluid volume bounded by the interface surface and the advection control 
volume, and V&l is the fluid volume bounded by the interface and the cell edges. This 
partitioned approach results in somewhat more accurate results then simply setting VD = 
V acv . The fluid side of the interface is easily determined separately for steep and parallel 
aligned slopes: For Is] 5 1, an arbitrary coordinate node (zN, yN) is defined to be on the 
fluid side of the donor cell if ye 5 SxN + b and yC < 0 or if yN 2 SxN + b and yC > 0, where 
(x,, yC) is the location of the volume fraction centroid and b is the y intercept as computed 
by equation (30). For Is] > 1, a node is defined to be on the fluid side if ZN 5 s-ryN - bs-’ 
and x, < 0 or if XN 2 s-iyN - bs-l and x, > 0. 

2. Iterative Bisection 

Youngs method [4] is perhaps the most popular algorithm in this arbitrary surface orien- 
tation class of solutions. It is certainly the method that has achieved a level of recognition 
to which new developing algorithms aspire. However, in its original form, the method is 
fairly complex to implement in 3D structured and in 2D arbitrary quadrilateral and polyg- 
onal grids. It is extremely complex for arbitrary hexahedral grids, and more so for general 
polyhedral grids in three dimensions. The method requires an elaborate system of tabu- 
lated geometric configurations and a logical decision-making process to account for all the 
possible orientations, intersections and geometrical volume shapes and calculations. The 
algorithm presented here eliminates the need to account for and compute in advance all the 
possible permutations and geometric possibilities, and should, in principle, be applicable to 
unstructured‘as well as structured meshes. 

Given the interface slope as computed by one of the methods described in section IIIB 2, 
Youngs method can be generalized with the following procedures: 

1. guess the intercept (along the x-axis for steep slopes or the y-axis for shallow slopes) 
for the linear equation representing the interface boundary, 

2. locate the two (in 2D) cell edges which intersect the surface by scanning each of the 
edges in turn, 

3. compute the fluid volume by adding a node to the center of the interface surface as a 
focal point for triangulating the bounded volume by connecting the node with the cell 
vertices on the fluid side as determined by the volume fraction centroid, 
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4. iterate on the intercept using a bisection procedure to shift the surface position until 
the bounded fluid volume in the donor cell and volume fraction match up, 

5. compute the flux by a similar triangulation process on the volume bounded by the 
advection control volume and the converged interface surface. 

The above generalized bisection algorithm represents the most sophisticated treatment of 
interface reconstruction presented in this paper. It thus offers a standard against which to 
compare the other faster and less complex methods. 

IV. COMPARISON OF METHODS 

The test problem against which all the methods presented in this paper are compared is 
a variant of the canonical “ball & jacks” problem. This particular problem is appropriate 
in that it consists of configuration geometries of both plane-fronted and curvature types: 
a two-dimensional cross or jack of width four cells (N w = 4) is placed within a spherical 
annulus also four cells thick in the radial direction. The composite object is then advected 
as a two-material flow in which the ball and jack components are (for most of the tests) 
treated as a single fluid, and the negative space is the second fluid. Results of solving the 
advection equations with a traditional second order upwind scheme with van Leer mono- 
tonicity is shown in Figure 6. Two separate calculations are presented to test translational 
and rotational advection. The translational evolution (top image) is performed to a phys- 
ical time of t = 50 on a 100 x 100 grid with unit cell widths and velocity components set 
to unity (wx = zlY = 1). The rotational test (bottom image) is carried out over a single 
complete revolution on a 50 x 50 grid with unit cell widths and velocities consistent with 
rigid-body rotation around the center of mass. The CFL timestep constraint is defined so 
that vAt = 0.6 in all the numerical evolutions. The displayed images in both cases represent 
filled regions outlined by volume fraction contour isovalues of F@ = 0.7, 0.5 and 0.3. Notice 
that in both evolutions the initial geometry loses its structure very early in the evolution, 
and the interface boundary completely diffuses away. 

Figure 7 shows the corresponding results from the 5-rule grid aligned model of section 
IIIA 1. The top two images are results from advecting the object along the x-axis and 
into the diagonal direction. In general, grid aligned algorithms have the nice property that 
advection is nearly perfect for flows oriented perpendicular to the cell faces. The bottom 
left image shows the rotational result analogous to Figure 6. The bottom right image 
translationally evolves the same basic object, but uses eight zones to resolve across both 
the ball and jack widths, twice the grid resolution as the top right image. The apparent 
tapering effect evident in the spherical fronts of the top right image converges away with 
adequate cell coverage. 

Figures 8 through 13 show analogous evolutions for each of the remaining algorithms: 
donor/acceptor limiter, monotonic flux fitting, CALE, monotonic flux corrected, spherical 
modeling, and the generalized iterative bisection methods respectively. Each figure shows 
results from the same diagonal translation (top images) and single revolution rigid-body 
rotation (bottom images) evolutions. The translation image shown for the spherical mapping 
algorithm (Figure 12) is generated from the advection of a 5-fluid system to confirm the 
robustness of the material ordering scheme, and to verify the stability of degenerate points 
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where several fluids meet in a single cell. The five fluids are represented by four different 
cross-hatched regions plus the exterior white space. Figure 13 displays two additional images 
in the bottom row distinguished by the method used to compute the interface slope. The 
image on the bottom left assigns the slope given by the vector normal to the line joining 
the donor cell center and the volume fraction centroid as described in section III B 2. The 
image on the bottom right is a result of assuming the slope to be given by the unweighted 
straight-line two-point gradients formed from only the east, west, north and south cells. 
All the other evolutions presented in this paper define the slope from a weighted gradient 
scheme that assigns a weight of one (two) to the diagonal (center) cells in the transverse 
direction as noted in section III B 2. Obviously the interface slope is not well represented by 
the simple one-dimensional gradient operator. 

Notice that the monotonic flux fitting algorithm performs somewhat better visually than 
the other grid alignment models, especially for rotational motion. In addition, flux corrected 
models are of intermediate quality in representing both plane-fronted and curve-fronted flow 
geometries when compared to grid aligned and arbitrarily oriented surface models. This class 
of algorithms may, therefore, represent a good compromise between accuracy and efficiency. 
Of the two flux corrected models, the monotonic flux corrected algorithm appears more 
accurate and stable than the CALE algorithm when considering long term evolutions (see 
Figure 14). Finally, it is interesting to note that the spherical mapping approach appears 
quite good from accuracy and computational cost considerations (see also Table I), especially 
when compared to the more sophisticated and complex iterative bisection method. 

For a quantitative description and comparison of these new algorithms, it is useful to 
carry out a more precise error analysis and convergence study. If perfect advection is as- 
sumed, the composite object can be translated or rotated analytically through a coordinate 
transformation and reconstructed on the grid at the same time corresponding to the final 
physical computation time. Numerical results can then be compared to analytically recon- 
structed solutions cell by cell with an averaged absolute measure of error 

where FJ,y] and $71 are the numerical and analytical volume fraction solutions respectively. 
Errors are computed for each material over a region bounded by the radius (from the mass 
center) R < 4N w, where NW is the number of cells spanning the minimum width of the 
cross and annulus shapes. The radius 4Nw is the outer radius of the spherical ball, and 
is used as the upper bound so that error measurements can more closely represent actual 
interface cell errors, and are not arbitrarily biased to small numbers. 

Table I shows each of the errors and relative CPU costs as computed from equation 
(33) for translational advection tests into the diagonal corner. The relative CPU cost is 
generally dependent on (and increases with) the volume filling factor of interface cells. CPU 
timings can therefore be quite different in general than shown here, especially for the more 
complex bisection method. Table II shows the corresponding errors for one-dimensional 
advection along the z-axis. Both tables compare the errors for each method and for two 
cell resolutions: NW = 4 and 8. As demonstrated by Table I, all methods converge at the 
expected linear truncation order characteristic of discontinuous flows in general. However, 
it is also evident from Table II that the grid aligned models (i.e., SL5 and DAL) are more 
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accurate and formally converge to second order for cases in which the flow is aligned along 
a grid axis. 

The errors shown in Tables I and II correspond to a single physical time of t = 50. 
However, it is also important to assert the relative stability of these methods by plotting 
the error growth in time. Figure 14 shows the errors as computed by equation (33) at four 
different times: t = 50, 100, 150 and 200. Notice that the SL5 method appears the most 
sta,ble with the smallest absolute error and an effectively zero error growth to the three-digit 
precision of the calculations. The monotonic flux fitting method has the largest absolute 
error among the grid alignment methods (despite having the best visual appearance), but 
there is also room to improve on the fitting formulae as noted in section IIIA3. Finally we 
note that the CALE algorithm appears the most unstable and has an obvious problem in 
maintaining symmetry. In fact, if one runs this method for long periods of time, the interior 
cross shape can eventually be dissipated away. On the other hand, it should be kept in mind 
that all of these methods do prevent diffusion of the interface boundary as evidenced by the 
tightly grouped contour curves of different isovalues. As a result, they all also evolve with 
substantially smaller errors (about a factor of 3 as shown in Table I for 2D translational 
advection) than second order upwind methods with no interface capturing. 

V. SUMMARY 

Several new algorithms have been presented in this paper to capture and track interface 
boundaries between different material types. These methods range from simple flow and 
grid aligned models in which the surfaces are represented as piecewise constant functions, 
to more complex geometric models which represent boundaries as piecewise linear surfaces. 
In the directionally split numerical implementation adopted here, the flow aligned models 
behave better for essentially linear or plane-fronted structures. In fact, the most accurate 
methods (as identified by the error calculations of section IV) are generalizations of the basic 
SLIC algorithm presented in section III A 1 which evolve with essentially zero error growth 
to the three-digit precision of the error calculations. Although the more complex piecewise 
linear methods reproduce curved structures more accurately, they tend to round off sharp 
corners, which contributes to generally higher errors for plane-fronted shapes. However, 
these methods are relatively accurate and stable, and therefore preferred for curvilinear 
flows which need to be resolved with few grid cells. For situations in which the flow features 
are reasonably well resolved, say 6 - 8 cells to resolve a unit arc length, one might consider 
flow aligned models more suitable since they do converge.$o the proper curved surfaces with 
added zone coverage. They are also much simpler to code, faster to run, and more easily 
generalizable to 3D and unstructured meshes, though the spherical mapping technique for 
piecewise linear reconstruction has alot of these same advantages. On the other hand, flux 
corrected models which distinguish between flow geometries may represent a reasonable 
compromise since they have the advantage of speed and simplicity while improving on the 
curvature capturing problems of grid aligned models and the corner capturing deficiencies 
of the piecewise linear reconstruction methods. 
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Upstream 

FIGURES 

Downstream 

FIG. 1. 
Classification scheme for the ordering of materials in the advection step. Four general 

categories are introduced to order fluids from the strongest downstream presence to the 
strongest upstream presence. In addition, a fifth category is used to capture those materials 
not belonging to any of the first four. 
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FIG. 2. 
Schematic representation of two of the three VOF class methods. The image to the left 

displays how a grid aligned model utilizes piecewise constant surfaces oriented either parallel 
or perpendicular to the flow field to reconstruct the interface boundary (here it is assumed 
the velocity is positive and to the right). The image on the right shows a piecewise linear 
reconstruction of the interface that the more general arbitrary surface orientation models 
might produce. 
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Advection Volume 
FIG. 3. 

The five different fluid volume topologies considered in the first of the two SLIC-like grid 
aligned algorithms. 
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FIG. 4. 
Comparison of the normalized monotonic flux fitting formulas (represented by dashed 

dot-dashed and solid lines) with the exact computed results (star symbols) and the exl 
panded second order van Leer expression (open circles and squares). The 45 degree line 
from the origin stretching to the opposite diagonal corner separates leading from trailing 
edge materials: the leading (trailing) curves lie below (above) the line. Both the leading and 
trailing edge calculations are normalized by the advection control volume (vat) and plotted 
as a function of the donor cell volume fraction Fo for different control volumes. 
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FIG. 5. 
Diagram of the spherical mapping approach to compute the interface boundary location 

along the radial direction from the donor cell center. T is the radius of the sphere set to 
match the total area of the donor cell, and ~0 is the length of the vector starting from the 
origin and intersecting perpendicular to the boundary surface. 
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FIG. 6. Advection of the “ball & jacks” problem using a  conventional second order upwind 
method with van Leer monotonicity. Four  grid cells cover the width of the jack and the radial 
thickness of the hol lowed spherical ball. The  structure in the top image is initialized at t = 0  
near the bottom left corner and advected with equal velocities V, = v.+, = 1  to a  time  of t = 50  
on  a  100 x 100 grid with unit cell widths. The  bottom image is the same structure undergoing 
rigid-body rotation, and displayed after one revolution on  a  50  x 50  grid. Both evolutions were 
performed with a  CFL constant of 0.6. The  images represent filled contour regions separated by 
isovalues of (0.7, 0.5 and 0.3) in the volume fraction. 
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FIG. 7. As Figure 6, except the 5-rule grid alignment model of section III A 1 is used to advect 
the interface. The top left image confirms nearly perfect advection for flow fields that are aligned 
with the grid orientation. The top right and bottom left images are the translational and rotational 
counterparts of Figure 6. The bottom right is the analogous evolution at double the grid resolution, 
using eight cells instead of four to span the width of the jack and hollowed sphere. 
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FIG. 8. As F igure 6, except for the donor/acceptor lim iter algorithm of section IIIA 2. 
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FIG. 9. As F igure 6, except for the monotonic flux fitting algorithm of section III A 3. 
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FIG. 10. As F igure 6, except for the CALE algorithm. 
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FIG. 11. As Figure 6, except for the monotonic flux corrected algorithm of section IIIB 2. 
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FIG. 12. As F igure 6, except for the spherical mapp ing mode l described in section III C 1. 
To  demonstrate the robustness of the mu lti-fluid ordering scheme, the top image is a  result of 
advecting five different fluids denoted by the distinct cross-hatched regions and the background 
white space. 
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FIG. 13. As Figure 6, except for the iterative bisection model of section IIIC 2. The top left 
and right images are the translational and rotational counterparts of Figure 6. The bottom left 
and right images are similar to the top left image, except the centroid method was used to estimate 
the interface slope in the left image, and the simple two-point gradient was used in the bottom 
right image. In all other evolutions, the slopes were calculated by the weighted gradient formula 
discussed in section IIIB 2. 
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FIG. 14. Comparison of numerical errors for each of the methods presented in this paper. The 
errors are evaluated at four different times and plotted as a function of time along the horizontal 
axis to gauge the relative stability of each method. 
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TABLES 

Method Error (NW =4) Error (NW =8) CPU (NW =4) 
uw2 0.30 0.14 1.17 
SL5 0.033 0.016 1.0 
DAL 0.038 0.022 0.96 
MFF 0.084 0.043 1.04 
CALE 0.064 0.03 1.0 
MFC 0.049 0.024 1.05 
SPH 0.048 0.024 1.09 
ITB 0.048 0.023 1.30 

TABLE I. Errors in the advection of the a-fluid “ball & jacks” problem at time t = 50 using 
a grid of size 100x100 (or 200x200 for the N w = 8 cases), CFL stability factor of 0.6, velocity 
components 0, = wY = 1, and unit cell widths. The second and third columns show the errors 
in a convergence study for which the structure dimensions differ only by the number of cells used 
to resolve the minimum width of the crosses and annulus (NW = 4 and 8 cells). Also shown 
in the fourth column is the relative cost effectiveness of each method compared to SL5 and as 
quantified by the CPU time on a Sun workstation. The method acronyms signify: second order 
upwind (UW2); 5-rule modified SLIC (SL5); donor/acceptor limiter (DAL); monotonic flux fitting 
(MFF); CALE algorithm (CALE); monotonic flux correction (MFC); spherical mapping (SPH); 
and iterative bisection (ITB); 

Method Error (W =4) Error (W =8) 
uw2 0.19 0.089 
SL5 0.0018 0.00046 
DAL 0.0033 0.00086 
MFF 0.047 0.024 
CALE 0.0089 0.0044 
MFC 0.037 0.018 
SPH 0.026 0.013 
ITB 0.024 0.012 

TABLE II. Same as Table II, but for one dimensional flows in which the velocity component 
along the y-axis is set to zero. 
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